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Key Concepts/Elements

What is …?
• Stimulated emission
• Population inversion
• Light amplification
• Pumping process
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Stimulated Emission

Frequency, Phase, Direction of stimulated emission photon are identical to 
that of the incident photon 

⇒ reason for the special properties of the laser light
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Energy Levels Population Inversion

normally energy levels are 
populated according to 
Boltzmann distribution

which results in absorption of 
light prevail over the stimulated 
emission at transition frequency

N1=N0 e-E/kT
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Energy Levels Population Inversion

during the pumping process 
in suitable medium level 
population can be inverted

so that stimulated emission rate is 
higher than absorption rate (which 
is still present)

⇒ in total, light amplification takes 
place
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Scheme of Laser

Three key elements of the laser:
• laser medium (active medium) to store the energy
• laser resonator (mirrors) = feedback
• pumping = energy supply
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Laser Medium

• Solid insulator: Nd3+:YAG, Yb3+:YAG  Ti3+:Al2O3 (Ti:Sapphire),   Cr3+:Al2O3 (ruby)

• Semiconductor: GaN-AlN,  GaAs-AlGaAs,  GaP, ….

• Gas: He-Ne, CO2, Kr, Kr+F2 …

• Liquid: organic dyes, … (practically not so importnant.)

Laser medium need to have certain 
energy level structure to fulfil 
following functions:

• absorb and store energy

• create conditions for stimulated 
emission – level population 
inversion
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Laser Medium

Energy levels can be:

• electronic system of individual atoms/ions/molecules in gas phase 

• electronic system of atoms/ions/molecules as dopant in solid medium

• semiconductor electronic bands

• rotational-vibrational levels of molecules in the gas
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Resonator

Main function of the resonator is
to provide feedback = some
light is reflected back as a 
seed for stimulated emission:

• to be amplified again in the 
laser medium

• to provide information on 
frequency, phase, direction –
reason for special light 
properties

The configuration of the resonator strongly depends on the laser type and 
desired light properties.

Examples:
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Pumping

Pumping process must create population inversion in 
the laser medium

Energy can be provided through:
• optically – absorption of photons
• electrical current in semiconductor
• electrical discharge in gases
• some exotic methods:

– gas dynamic pumping (adiabatic gas expansion)
– chemical reaction (producing molecules in the excited 

state)
– electron beam (for free electron laser)
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Optical Pumping

• Laser medium absorbs light of:
– gas discharge lamps (flash or continuous)
– another laser (e.g. laser diodes)
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Electric Pumping

– electric current (creating e-h pairs in 
semiconductors)

– gas discharge (excimers, CO2, He-Ne)

gas discharge take place 
between the electrods

exciting by flowing current
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Gas Lasers 

• Argon : 364 nm, 488 nm, 514 nm
• Krypton : 647 nm (+ other visible lines)

Argon

Argon + Krypton
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Gas Lasers

• Active medium  = ionised gas (Ar, Kr…)
• Pumping = electrical discharge
• Resonator = usually plane parallel

Brewster 
windowplasma tube

water or air 
cooling

laser beam

out-coupling mirror mirrorhigh voltage
power supply
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Gas Lasers 

• continuous wave (not pulsed)
• very high beam quality
• relatively low power – tens of W
• inefficient (<1%) – high heat generation

Argon
Argon + Krypton
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Propeties of Laser Radiation

• monochromatic

• coherent

• directed

• high brightness / high beam quality

• multiple wavelength (colors)

• incoherent

• omnidirectional

• low brightness
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Light Monochromaticity

typical laser emits light in narrow wavelength range 
Δλ~ 0.0001 nm -1 nm

spectral line width (Δλ) of the laser depends on:
• emission (gain) spectrum of the laser medium
• transmission spectrum of the resonator
• resonator quality = how many times light travels 

around in resonator
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te
ns

ity

Frequency



Advanced Materials Processing with Intelligent Systems, MT, EPFL 20S. Shevchik & P. Hoffmann

Coherency

• Single photon in incoherent light are not correlated
• For coherent light, phases of the photons (EM-waves) are 

correlated both in space and in time

Incoherent light source Coherent light source
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Brightness/Radiance of a Laser

• Brightness is a qualitative term.
• Radiance should be used for quantative expressions

Radiance – power emitted per unit surface into the unit of 
solid angle [W/(m2·sr)]
Emitting surface - laser beam cross-section at the exit
Emision angle - divergence of laser beam 

Divergence of laser beam is typically very low ⇒ brightness 
(radiance) is very high
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Beam Quality - Beam Brightness
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Laser vs. Conventional Light Sources

laser beam can be focused 
to very small area on the retina

(high brightness beam)

d=5-20µm

power of conventional (low brightness) 
light sources is distributed 

over quite large area

α

apparent visual angle
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Radiance (brightness) of Sources

• Comparative radiance (brightness) of light sources:

Irradiance on the eye retina is proportional to the radiance  (brightness) of 
the source:

• 1 mW laser already gives 100 times (two orders of magnitude!) higher 
power density (W/m2) than staring in the sun.

• 1 W laser - 100 000 times (five orders!) higher power density
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Propeties of Laser Radiation

• monochromatic

• coherent

• directed

• high brightness / high 

beam quality

2w0 Θ

High brightness of (directed) laser beam is the main 
reason for its danger for the eyes !!!
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Laser Types: wavelength

Source: http://www.shorelaser.com/

GaN

AlGaInP

AlGaAs InGaAsP

Laser Diodes (LD) 
based on ... InGaAs

Wavelength [nm]

He-Ne

Yb:YAG

Er:YAG

2x
Nd:YAG

InGaAsSb

no LDs in green-
yellow region !!!

used for laser processing
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Time Scales

Themal processes

Heat diffusion

Thermalization 
crystalline lattice –
electrons

Light absorption
by electrons
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Type of laser Pulse length determined by Typical pulse 
length

Characteristic
pulse peak power

Continuous wave 
(cw) - ∞ Ws – kWs

Free running laser Pump pulse length
(flash lamp) 100 µs – 1ms kWs

Q-switched laser Time constants of active material 
and modulating element 1 ns – 100 ns MWs

Mode-locked 
laser

Number of coupled modes, pulse 
compression 10 fs – 10 ps GWs

Laser Types: Pulsed & CW

What each type of the laser is good for ?
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D. Bäuerle; Laser Processing and 
Chemistry, 3rd ed. Springer, Berlin, 
2000

It depends on :
1)  time scale of the 

process
2)  intensity you need for 

the process
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Type of laser Pulse length determined by Typical pulse 
length

Characteristic
pulse peak power

Continuous wave 
(cw) - ∞ Ws – kWs

Free running laser Pump pulse length
(flash lamp) 100 µs – 1ms kWs

Q-switched laser Time constants of active material 
and modulating element 1 ns – 100 ns MWs

Mode-locked 
laser

Number of coupled modes, pulse 
compression 10 fs – 10 ps GWs

Laser Types: Pulsed & CW
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Free-running Lasers

• „Free-running“ = no special pulse duration regulation
• pulse duration determined by pump duration, typically 10 µs – 1 ms
• peak power is relatively low
• total pulse energy can be quite high
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flash lamp pumping

laser pulse
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Nd:YAG Laser- Flash Lamp Pumped
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Yb:YAG Thin Disc Laser

Avantages: High power
High beam quality
Very efficient cooling and longitudinal
thermal gradient only.

Thin disk on his cooling block
With HR coating 

Indium foilMultilayer 
high reflection
coating λlaser

Antireflection coating

Cooling block

Retroreflecting prism
Parabol mirror with
hole in his center 

Laser output mirror Laser end mirror 

Cristal laser disk
100 à 300 µm thickness  

Fiber injected pump beam
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four laser head combined give 8kW optical 
power at 1030 nm (IR)

Thin Disk Laser
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Fiber Lasers

Single mode

Multimode

(Courtesy of IPG Photonics 
Corp.   Bill Shiner)
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Fiber Lasers

(Courtesy of IPG Photonics Corp)

M2 = 1
BPP = λ/π

=0.34 mm*mrad

M2 ≈ 15
BPP = λ/π

=5 mm*mrad
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Light Emitting Diodes
En

er
gy

Recombination of electrons and holes in the 
p-n junction liberates energy, emitted as light.

Differences between 
LED and LD (laser diode):

•LED devices do not reach light 
amplification condition
•LD have designed resonator 
(feedback) to promote stimulated 
emittion
•LED are spontanous emission 
devices
•LD emission is more directed
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Type of laser Pulse length determined by Typical pulse 
length

Characteristic
pulse peak power

Continuous wave 
(cw) - ∞ Ws – kWs

Free running laser Pump pulse length
(flash lamp) 100 µs – 1ms kWs

Q-switched laser Time constants of active material 
and modulating element 1 ns – 100 ns MWs

Mode-locked 
laser

Number of coupled modes, pulse 
compression 10 fs – 10 ps GWs

Laser Types: Pulsed & CW
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Q-switch mode
Idea of Q-switch regime – accumulate 
energy and release in a short time

Q → stands for quality of resonator, quality is switched 
in time

Resonator state A – resonator is closed/blocked
• stimulated emission is not possible
• energy is accumulated

Resonator state B – resonator opens abruptly
•inversion is high → amplification coefficient is 
very high 

•all accumulated energy is emitted 
in a short burst/pulse

Pumping

Pumping

Pumping

Light blocker

Light blocker
removed

stationary regime

Q-switch regime
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Q-switching the Resonator

saturable 
absorber

mechanical 
shutter Pockels cell

Result: 
• short pulses 1-100 ns
• high power during 

the pulse ~0.1-100 MW

active medium
Q-switch element
(loss modulation)

mirror
outcoupling 

mirror
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Q-swiched Solid State Lasers
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What is an Excimer laser?

• Gas laser using a combination of a noble and a reactive gas 
• Under pressure and electrical stimulation a pseudo molecule called 

Excimer (= excited dimer) is created
• By spontaneous or stimulated emission it dissociates back into two 

unbound atoms (laser with one energy level!)

http://upload.wikimedia.org/wikipedia/de/6/65/%C3%9Cbergang_KrF-Excimer.svg
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Wavelength of Excimer Lasers

• The wavelength of an excimer laser depends on the molecules 
used (can not be tuned)

• emission is in the ultraviolet range

Most important technologically are
ArF  (193 nm) and KrF (248 nm)
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Schematic Set-up

gas circulation fan
electrodes

pre-ionization

heat exchangers
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Temporal and Spatial Profile of the Beam

• ~20 ns is a characteristic pulse 
length of ArF and KrF lasers

• determined by the excimer molecule
properties - can not be easily tuned
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Excimer laser technical specs

• Average power: 1 W – 1000 W
• Peak power: up to 50 MW
• Pulse frequency: 1 Hz – 6 kHz
• Pulse duration: 5ns – 200ns
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Microelectronic production

State-of-the-art microstepper with laser and lens

Wavelength 193 nm
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Research High Power Excimer Laser

History of excimer lasers has started at NRL around 1975 with emission from XeBr

The ELECTRA KrF laser at NRL (Naval Research Laboratory)
• pulses of 250 to 700 J at repetition rates of 1-5 Hz
• electron beam pumped
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Type of laser Pulse length determined by Typical pulse 
length

Characteristic
pulse peak power

Continuous wave 
(cw) - ∞ Ws – kWs

Free running laser Pump pulse length
(flash lamp) 100 µs – 1ms kWs

Q-switched laser Time constants of active material 
and modulating element 1 ns – 100 ns MWs

Mode-locked 
laser

Number of coupled modes, pulse 
compression 10 fs – 10 ps GWs

Laser Types: Pulsed & CW

Why do you want very short pulses?
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Mode-locking regime

t [s]

interference of waves with two 
different frequencies

Mode-locked pulses – result of inteference of 
many „locked“ (phase/frequency related) light 
waves

200 Hz

202 Hz

t [s]
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Mode-locking regime

interference of waves
with 120 equidistant  frequencies

t [s]

t [s]

interference of waves 
with four equidistant  frequencies

200 Hz

202 Hz

204 Hz

206 Hz
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Mode-Locking

frequency

Amplification 
spectrum

am
pl

itu
de

• Different interfering light waves are longitudinal modes of the resonator
• more modes → shorter the pulse

• Typical mode-locked lasers have:
ultra short pulses ~ 50 fs – 1 ps
very high peak power ~ 1MW - 10 GW 

Heisenberg uncertainty principle: 1≥∆⋅∆ τν
 ⇒ very short light pulses cannot be very monochromatic  ⇒ special active media 
with broad emisssion spectrum needed for very short (femtosecond) pulses

Ti:Sapphire is typical active medium for fs-lasers
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Examples of Ultra-short pulses
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Modes couplés dans la pratique

active medium
switching element
(loss modulation)

mirror
outcoupling 

mirror

Q-modulating element (1-2%) and pulse 
round-trip in the resonator are synchronized: 

actively or passively (automatically)

• the synchronized bunch of light is 
amplified, out-of-phase emission is 
supressed

• a single travelling pulse (= mode-
locked conditions) is established 
after some round-trips
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Schematics of a Femtosecond Laser

Dispersion compensationAstigmatismus, dispersion
and Kerr lens effect

Argon ion or freq. doubled Nd:Yag laser

M1
(output coupler)

Adjustable slit BRF M2

M3

M4

P1

P2

Ti:Al2O3

τblue>τred τred>τblue

→ minimum pulse width: ~30 fs,   special thin crystal and chirped mirrors: 4-5 fs
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Femtosecond laser with amplifier
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D. Bäuerle; Laser Processing and 
Chemistry, 3rd ed. Springer, Berlin, 
2000

It depends on :
1)  time scale of the 

process
2)  intensity you need for 

the process
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Content

• Laser Principles
• Properties of Laser Light
• Classifications of Laser Types
• Pulsed Lasers
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Content

• Laser dangers & hazards
• Insight into the eye physiology
• Classification of Lasers
• Protective measures

– awareness
– personal protection
– protection of people around
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Laser Dangers & Hazards
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Causes of Laser Accidents
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Non-eye Dangers

• Skin Burns
• Fire
• Electrical shock
• Chemicals required for operation of the laser: 

– liquid organic dyes
– excimer gases (F2, Cl2,..)

• Dangerous gases due to decomposition/burning of irradiated
material

• High pressure lamp explosion (for flash lamp pumped lasers during
maintenance)
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Laser is an Electric Device

• High-voltage can be present in the laser –
apply general safety measures

– the operation area must be DRY (be
careful with cooling water)

– disconnect equipment the power 
supply before opening the housing
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Dangers to the Skin

• Burns
– 1W laser can cause burns, but protective reaction can 

be fast enough
– for 5W laser reaction time is not enough

• UV lasers can have cancerogenic effect on skin 
(especially 248 nm – KrF excimer)
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Eye Physiology
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Spectral Sensitivity of the Eye

Laser in the range close to the visibility 
regions (350- 400 nm and 700-850 nm) 
are very dangerous.

The beam is visible and appear to be 
very weak - though in reality the power 
may be very high.

Typical examples: 
 pumping diodes for Nd:YAG (808 nm, P > 20-50 W)

Spectral sensitivity of cones and rods 
in the human eye

Visible range: ~400 – ~750 nm
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Transmission of the Eyes Tissues

Cornea/lens hazard:
<400 nm and >1400 nm

Retinal hazard region:
400 – 1400 nm

Transmitted wavelength range is significantly 
broader than visible range → retinal hazard !!!!
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Do not get injured!

Followed safety 
rules

Cornea Damage
BAD

Retina Damage
WORSE
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What to do in case

In case of injury optician should be visited 
immediately !!!!

Experience has demonstrated that most laser injuries go 
unreported by the injured person for 24–48 hours. 

This is a critical time for treatment of the injury!
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How do you know if you have an eye injury?

• Exposure to infrared high-power laser causes a burning pain in the 
eye (to the cornea or sclera)

• Exposure to visible lasers causes a bright color flash of the emitted 
wavelength and afterwards an image of the complementary color

• Exposure to short pulsed infrared lasers may go undetected or may 
cause a popping sound followed by visual disorientation
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Maximum Permissible Exposure

Reference: http://en.wikipedia.org/wiki/Laser_safety

MPE: highest power or energy density (in W/cm2 or J/cm2) of a light source that is 
considered safe – depends on the exposure duration

MPE for the human eye
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MPE and Exposure Duration

Δτ=0.25s is a typical reaction time to close the eye 
lid (blinking)

For visible lasers this is considered a critical period 
during which MPE should not be reached.

For invisible (e.g. infrared laser) 10s exposure is 
usually taken as the critical period – so the 
protection need to be stronger.
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Retinal Irradiance for Various Sources
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dangerous zone for:
2 mm pupil, 0.25s

7 mm pupil, 0.25s

Typical Retinal Image Size

1W laser
1mW laser

comfortable zone



Advanced Materials Processing with Intelligent Systems, MT, EPFL 76S. Shevchik & P. Hoffmann

Classification of Lasers
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Laser Safety Standards

There are two principle international laser safety 
standards:

• International Electrotechnical Commission
IEC 60825 

• American National Standards Institute
ANSI Z136

There are also European Norms for Safety Eyewear:
• EN 207 and EN 208
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Old and New System

“Old” classification system 
(developed in early 1970s), 
still used in US (ANSI Z136)

• Class I
• Class II
• Class IIa
• Class IIIa
• Class IIIb
• Class IV

Revised system (introduced in 2002) - IEC 60825-1
• Class 1
• Class 1M
• Class 2
• Class 2M
• Class 3R
• Class 3B
• Class 4

new classification takes into account knowledge 
about the lasers and laser safety accumulated 
since introduction of the first classification

↑

Arabic numerals

Roman numerals →

How to differentiate?
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Laser Classes

Class Hazard Comments
1 without danger if view not intentional

1M retinal burn dangerous if viewed through magnifying 
optics (microscope, telescope, etc.)

2 retinal burn danger if exposure >0.25s (reaction time)

2M retinal burn danger if exposure >0.25s and viewed 
through the optical device

3R retinal burn
direct view is dangerous

(5mW limit for visible lasers)

3B retinal burn & other 
biological effects

direct view is dangerous, diffuse reflections 
could be dangerous

(0.5W limit for visible lasers)

4
retinal burn & other 

biological effects 
& skin burn

direct view and diffuse reflections are 
dangerous. Extreme care!
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Laser Classes

Approximate assignment of 
the laser classes for 
continuous wave lasers 

Depend on laser power, 
emitted wavelength, pulse 
duration.
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Maximum Emission Limits for Class 1

←pulse
    length

↑
wavelength complexity of the real world !!! (meant mainly for manufacturers)
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Prevention & Protection 
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Protection Measures

• Warning signs and flashing lights
• Interlocks
• Exposed areas restriction
• Eye protection: goggles/glasses
• Skin protection: gloves, full face mask (for UV lasers)
• Most important: think about consequences before 

you act !!!
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Resposibility

• Operator of the laser has the primary 
responsibility !!!!

• If you have any concerns, questions or lack of 
knowledge contact the superior or (laser) safety 
responsible  
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Warning Signs

Classes I to IIIa Classes IIIb to IV

Labels used to mark the lasers
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Warning Signs

Warning sign at the beam 
exit of the laser body

Standard “Laser Hazard” warning sign.

Must be present on lasers starting from Class II

Normally also placed to mark the dangerous area 
(e.g. at entrance doors, etc.)
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Precautions

• Avoid reflective materials in the laser lab
– polished objects
– glossy paints
– jewellery; watches

• Use beam barriers
– beam blockers to absorb unused beams/reflections
– redundant blocker behind your set-up in case beam 

passes through
– curtains/screens to protect the others
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Protective Barriers (local)

Laser-Professionals.com 
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Protective Screens (whole area)
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Precautions

• Never point the beam to somebody
• Never look along the beam axis or at the level of 

the beam path in general
• Don’t install beam axis in eye height

– laying (unconscious)       ca. 0.1 m
– sitting                            ca. 1.2 m
– standing                         ca. 1.7 m 

• PC for data recording / analysis should be placed 
in the protected area (common risk source!!!)
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Eyewear
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Eyeware

Protective glasses / goggles are laser specific –
they are disigned to block certain wavelength 
and withstand certain power

Pay attention that the 
glasses are suitable for 
the laser you use !!! 
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Optical Density

Protective properties of the protective eyewear is typically 
marked in OD units. 

Optical Density (OD) – measure of absorption in logarithmic 
scale OD             % Transmission 

0                          100%
   1                            10%
   2                              1%
   3                            0.1%
   4                          0.01%
   5                        0.001%
   6                      0.0001%

Dλ = log10(Iincident / Itransmitted)
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Selecting Eye Protection

• Dλ = optical density at wavelength λ
• Hp = potential eye exposure (given by laser and 

set-up)
• MPE = Maximum Permissible Exposure for used 

laser type (λ, τ)

Dλ = log10(Hp/MPE)

How to determine minimum required Optical Density (OD):
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Eye Protection

• Remember: protective laser glasses are “the 
last hope” in case of accidental exposure and 
also might fail (especially for high power 
lasers)

• Be sure to take all possible 
protective measures to 
avoid such exposures in 
principle
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LEDs
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Light Emitting Diodes
En

er
gy

Recombination of electrons and holes in the 
p-n junction liberates energy, emitted as light.

Differences between 
LED and LD (laser diode):

•LED devices do not reach light 
amplification condition
•LD have designed resonator 
(feedback) to promote stimulated 
emittion
•LED are spontanous emission 
devices
•LD emission is more directed
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Light Emitting Diodes

Surface emitting LEDs

Edge emitting LEDs

Broad area edge emission Strip geometry edge emission

Broad area surface emission
small area surface emission

Emitting surface of the LED can be quite small: 
dia.~10 µm – for surface emission
1 µm x 10 µm – for egde emitting LED
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LED Safety Considerations

• Modern illumination LEDs can reach multi-watt light output.
• Combined with small source area this may result in very high brightness 

light source.

European CENELEC EN60825-1 Standard specifies LED evaluation method 
based on source luminous intensity (lm/sr) and viewing angle of the LED

Some brigth LEDs are classified as Class 2 devices (can cause retinal burn!!!)
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The END
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Content

• Gaussian beams
• Focusing
• Mask imaging
• Laser diode beam forming
• Optical fibers
• Interferometric methods
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Imaging and Gaussian beams

The surface of the beam vanishes 
at the exact focus location
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“Real World” Focusing

Diffraction with a slit aperture
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Intensity Distribution in Gaussian Beam

at each z-position, radial intensity distribution is Gaussian
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Definition of Gaussian Beam

 

I r,z( )= I0e
−2 r

w(z)( )2
Fundumental mode intensity

zR

 

w0 = w z = 0( )

z=zR z=2zR

w0/zR

z=zR z=2zR
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Definitions of the Beam Size

eIwI /  )0,( 00 =

Definitions of the beam size (waist):

0
2

0 2)(,/  ),( wzwweIzwI eeee ===

w0we
2

0 0 0
0

  2 ( )   P rI r dr w Iπ π
∞

= =∫

Total intensity of the beam:
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Waist

Divergence

Rayleigh Range and Depth of Focus

0
2  fw

a
λ λ

π θ π
≈ ≈

⋅

( )  
0

2

0  1  )( z
zwzw +=

2 2
0

2

2 4  2     R
w fL z

a
π λ
λ π

= = =

0    
2R

w a
z f

θ = =

zR

z=zR z=2zR

w0/zR

Depth of focus

 

zR =
π
λ

w0
2Rayleigh range value

Beam radius at the distance

Rayleigh range definition:   I(r=0, z=zR) = I0/2
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Cross-section of Gaussian Beam

 

I r,z( )= I0
w0
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a Gaussian Beam is completely defined by the parameters:
w0 - waist at focal point
zR – Rayleigh range
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Cross-section of Gaussian Beam
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I(r=0, z=zR) = I0/2               After one Rayleigh length

I(r=0, z>>zR) = I0(zR/z)2     In the far field

Some examples of properties:
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Beam Parameter Product (BBP)

BBP
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Focusing of a Gaussian Beam

BBP stays constant for the 
same beam

Nd:YAG and CO2 laser
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M2 Factor

2
0BPP w M λθ

π
= ⋅ =

0w
λθ
π

=Θ>Θgauss

for Gaussian (‘ideal’) beam

for non-ideal beam an M2 factor introduced

gaussian beam (M2=1, BBP = λ / π)

M2 is a wavelength-independent measure of  beam quality 
(comparison with Gaussian beam)  

BPP (beam parameter product) 
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M2 Factor

Θ>Θgaussw>2w0

2w0 Θ

gaussian beam (M2=1, BBP = λ / π)

worse quality beam: 
same focusing, larger spot

worse quality beam: 
stronger focusing to get same spot

2

0

M
w

λθ
π

=
⋅

2
0w M λ

θ π
=

⋅
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d

Comparison of Gaussian Beam and Plane Wave

 

2w2 ≅
1

2w1

4λf
π

=
1

2w1

1.27λf

 

d ≅
1
D

2.44λf

2w2

Gaussian Beam

Airy (plain wave with circular aperture)
 

dG,FWHM =
1

2w1

1.18λf

 

dAiry,FWHM =
1
D

2.0λf larger spot!

smaller spot!
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Focusing

0
2  fw

a
λ

π
≈

Telescope can be used to increase beam diameter 
⇒ and reduce the minimal spot size
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Why Beam is not always Gaussian?
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Beam quality, M2:
The ratio of the laser 
beam's multimode 
diameter-divergence 
product to the ideal 
diffraction limited 
(TEM00) beam 
diameter-divergence 
product

M2=1  Gaussian 
beam
q*=M2 ⋅ λ/π 

Modes TEM m,n
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Gauss-Laguerre modes
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Comparison of BBP for Different Laser Designs

Thin Disk Laser

Fiber Laser

Rod Laser
Average Power [W]
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Mask projection system
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Exitech M8000 Micromachining System 

Travel 400 mm

Accuracy ±0.50 µm

Repeatability ±0.20 µm

Straightness ±0.40µm

Flatness ±0.40µm
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Method Based on Interference
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